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Iterative Least Squares Functional
Networks Classifier

Emad A. El-Sebakhy, Ali S. Hadi, and Kanaan A. Faisal

Abstract—This paper proposes unconstrained functional net-
works as a new classifier to deal with the pattern recognition
problems. Both methodology and learning algorithm for this kind
of computational intelligence classifier using the iterative least
squares optimization criterion are derived. The performance of
this new intelligent systems scheme is demonstrated and examined
using real-world applications. A comparative study with the most
common classification algorithms in both machine learning and
statistics communities is carried out. The study was achieved
with only sets of second-order linearly independent polynomial
functions to approximate the neuron functions. The results show
that this new framework classifier is reliable, flexible, stable, and
achieves a high-quality performance.

Index Terms—Functional networks,
length, statistical pattern recognition.

minimum description

1. INTRODUCTION

ATTERN classification problem is a supervised learning
multidisciplinary research problem. It occurs in a wide
range of human activity. At its broadest, the term could cover
any activity in which some decision is made on the basis of
currently available information, and a pattern classification
procedure is a method for repeatedly making such judgments
in new situations. The function of pattern classification is to
categorize an unknown pattern into a distinct class based upon
a suitable similarity measure. Several research studies for
classification have been proposed in the literature, but studies
have shown that so far no algorithm uniformly outperforms all
others in terms of accuracy and quality [12], [15], [17]. There
is no consensus in the literature as to which one performs better
than the others. Comparative studies among the most common
machine learning and statistics classifiers have been carried out
in [8] and highlighted both their advantages and disadvantages
drawbacks.
Recently, the scientists have been supporting the hybrid clas-
sifier, which combines more than one classifier to get better per-
formance [2], [10]. [12], [18], [20], [22]. The main contribution

Manuscript received September 16, 2005; revised April 23, 2006 and Oc-
tober 11, 2006; accepted November 8, 2006. This work was supported by the
Cornell University, Ithaca, NY; King Fahd University of Petroleum and Min-
erals (KFUPM), Dhahran, Saudi Arabia; and Egyptian and Educational Bureau,
Washington D.C.

E. A. El-Sebakhy and K. A. Faisal are with the Computer Science, College of
Computer Science and Engineering, Department of Information and Computer
Science, King Fahd University of Petroleum and Minerals, Dahran 31261, Saudi
Arabia (e-mail: dodi5 @ccse.kfupm.edu.sa; faisal @ccse. kfupm.edu.sa).

A. S. Hadi is with the Statistical Sciences Department, Cornell University,
Ithaca NY 14850 USA (e-mail: ali-hadi@cornell.edu; ahadi @aucegypt.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2007.891632

of this paper is to propose a new intelligent systems classifier
called unconstrained functional network using the iterative least
squares scheme for learning and select the best model based on
the minimum description length (MDL) criterion. As it is illus-
trated as follows, this new framework will be able to get over
some of the most common drawbacks of the existing classifiers.
In addition, it is much easier to use and, as compared to existing
methods, it takes much less computations. Furthermore, it uses
both domain knowledge and data knowledge to build a decision.

The rest of this paper is organized as follows. Functional
networks background is introduced in Section II. The iterative
least squares functional networks classifier methodology is ex-
plained in Section III. Comparison with the most common clas-
sifiers is investigated using real-world application in Section IV.
Section V contains both conclusion and some ideas for future
work.

II. FUNCTIONAL NETWORKS

Functional networks were recently introduced as a general-
ization of the standard neural networks, which deal with general
functional models instead of sigmoidal-like ones. The neuron
functions are learned instead of weights as in the standard neural
networks. Unlike neural networks, both inputs and outputs need
not be normalized. Herein, we give the fundamentals of func-
tional networks, and for details, one may refer to the publica-
tions of [4]-[6] and [9].

As it canbe seen in Fig. 1, a functional network consists of the
following: 1) several layers of storing units, one layer for con-
taining the input data (z;; ¢ = 1,...,4), another for containing
the output data (x7) and none, one, or several layers to store in-
termediate information (z5 and x¢); 2) one or several layers of
processing units that evaluate a set of input values and delivers
a set of output values (f;); and 3) a set of directed links. Gen-
erally, functional networks extend the standard neural networks
by allowing neuron functions f; to be not only true multiargu-
ment and multivariate functions, but to be different and learn-
able, instead of fixed functions. In addition, the neuron func-
tions in functional networks are unknown functions from a given
family, such as polynomial, exponential, and Fourier, etc., to be
estimated during the learning process. Furthermore, functional
networks allow connecting neuron outputs, forcing them to be
coincident.

III. FUNCTIONAL NETWORKS CLASSIFIER

The goal in the pattern classification problem is to learn the
probability m;;, that the object ¢ falls in one of the predefined

1045-9227/$25.00 © 2007 IEEE



EL-SEBAKHY et al.: ITERATIVE LEAST SQUARES FUNCTIONAL NETWORKS CLASSIFIER 845

Fig. 1. Functional network architecture: an example.

classes { Ak}z;%). Based on this definition, we assume that the
initial functional network classification model can be written as

Tix = hi(Xq, O), t=1,...,n (D
where x; = (%;1,...,%) is the ¢th observation in a given
training set D = {(x,y)}, where x € R? and y € R. The
matrix Oy = [f1x, ..., 0,x]" represents the functional network
parameters needed to be learned. The probabilities in (1) are
subject to two constraints

c—1

}Lk(Xi7ek> Z 0 and Z}Lk(xi79k) =1. (2)
k=0

Therefore, the functions h(x;,0;) are to be learned based
on the available data, bearing in mind the restrictions on
hi(x;,0r) in (2). Commonly used parametric models for
hi(x;,©y) are as follows.
1) The cumulative distribution function (CDF')
hk(Xi,ek) = F_I(XT@k) (3)
where F'(.) is an appropriate cdf and Oy, are the parameters
of F(.).
2) The sigmoidal function
hk(Xi, ®k> = S(XTek) (4)
where S(.) is any sigmoidal function satisfying, possibly
after normalization, the constraints in (2).
Therefore, when dealing with the classification problem using
functional networks, we assume that the probability 7;; can be
written as

it = P (gr(Xi, Or)) ©)

where g (x;, ) are unknown, but unrestricted functions to
be learned from the data, and the function p(.) must satisfy
the probability conditions. Since functional networks do not
make any assumptions about the function gx(x;, ), then it
can be known or unknown in form AND/OR in the parameters.
It could be linear or nonlinear. However, since we approximate
gx(xi,0%) by a family of linearly independent functions, one
may think of functional networks here as semiparametric pro-
cedures. We choose one of the most common discrepancy mea-
sures to learn the neuron functions g (x;, Oy ). In this paper, we
are going to choose the iterative least squares optimization cri-
terion with the class indicator variables and the semiparametric

procedures. This will lead to fast convergence and efficient re-
sults for the output model. However, one can choose different
loss functions.

A. Learning Algorithm

The learning procedures in the unconstrained functional net-
works classifier is equivalent to approximate the neuron func-
tions using some families of linearly independent elementary
functions W; = {4, (2:;);7; = 1,2,...,mj}, that is

mik Mpk
Xz ek Z Zcrlro 'r‘pwrl (le) -rll)rp(xip)
where ¢, ...7, are the parameters in the network model

[4]-[6]. We note that, in this approach, the class category y, is
immediately learned using F(yy|x;) = m, fori = 1,...,n;
and k = 0,...,c — 1. Here, we assume that the class category
has a multinomial prior distribution. Hence, the goal is to clas-
sify an object z; to one and only one of these known classes.
Therefore, we choose the model

Yik|Ti = Tk, + €ik (6)

where ;). is an indicator variable, which is a (¢ + 1) binary
variable coded O or 1 to indicate the group membership of an
observation, that is

1, ifa e Ay
Yik = 0, otherwise

where Z;;}) yir = 1, fore = 1,...,n, regardless the value of
y. These binary variables are introduced only to clarify the min-
imized function and are not used in the actual functional net-
work procedures. The iterative least squares loss error function
is written as

(N

2

egk(xiﬂjk)

c—1
1+ Z 9k (xi,05k)
k=1

Minq Q= |y —

subject to ||0;x|| = 1,forj = 1,..., (m+1)?. The minimum is
obtained by solving the system of equations dl(8;x)/0cy, .., =
0in ¢, o

Z 27rtk Yir — 7rtk)( 1)] 90 "
J

=1

aeak

Therefore, we obtain a system of equations that can be solved
using the iterative numerical method. We note that the number
of parameters in the unconstrained functional network model is
Hle m, i, which is a very large number, and is computation-
ally expensive. One way to reduce the parameters in the func-
tional network is to write the neuron functions g (x;, Ox) as

Z nggk .Z'” (8)

r=1 j=1

9k (leek

where g,jx(2;;) are unknown functions, which subsume the
unknown parameters ©p. The unknown neuron functions
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Fig. 2. Unconstrained functional networks classifier with only two feature vari-
ables architecture.

grjk(xij) can be approximated using a family of linearly
independent functions U,.; = {¢,ji(zi;) : | = 1L, m,jp, 7 =
1,...,27 — 1}, thatis

Mok

Z ar]qu/}rgl ."I}“) (9)

=1

gr]k xl]

Therefore, we only need to learn the parameters {a,;x}. For
more simplification, the neuron functions g (x;, f;x) in (8) can
be expanded as

UlLs
k(X Or) = Zgnk Ti) ¥ Y Grink (Tigy) Grink (Tijy)
r=LL,
UL,
+...+ Z Grjik (Tij,) - - Grj ke (Ti5,)
r= LLP71

Jl j2-~"7jp:17"'7p
such that j; # jo # ... # Jp

where LLs = 337, (1?) and UL; = ZJ 1 (J) for all s =
1,...,p—1land t = 2,...,p. Fig. 2 shows the architecture
of the corresponding functional network classification model
(6) for two feature variables only, say x; and x,. Suppose that
each one of the neuron functions gr]'k(iljj,j) is approximated
using the sets of known linearly independently families. Now,
using the uniqueness conditions as in [3] and [4], the neuron
function g11x(;1) is the only neuron that contains the constant
term. The rest of the neurons do not contain the constant term.
Therefore, we obtain a system of nonlinear equations of size
(m + 1)P x (m + 1)P. The resultant optimization problem can
be solved numerically. Thus, for a given training set D, the de-
cision functions gj(.) on x; € R? can be learned from this
training sample and then we actually predict the response vari-
able y for any given test sample x* € R?. The unconstrained
functional networks with iterative least squares (FN-ILS) clas-
sifier and the corresponding learning procedures for p predictor
variables are summarized in Fig. 4.

(10)

B. Model Selection and Validation

Once the learning process has finished and the neuron func-
tions of the functional network have been computed, it is im-
portant to check the quality of the resulting model. A computer
implementation of model selection can be done in several ways;
see [10] and [16] for more details. The best functional network
classifier is chosen based on the smallest value of the description
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length. The form of the description length for the classification
problem is defined as

mlog(nk) n_k log < Z )

L(©y) =

for k = .,c — 1, where m and k are the number of el-
ements in the family and the category levels, respectively. We
note that the description length has two terms. The first term is
a penalty for including too many parameters in the functional
network model. The second term measures the quality of the
functional network model fitted to the training set. Therefore,
the best model is the model with the smallest value of L(©y).
The final step in the development and implementation of
the classification model is the judgment and evaluation of the
quality and capability of the fitted model (validation step). To
achieve this step, we compute the following quality measures.
1) Compute both correct classification rate (CCR) and av-
erage squared classification error (ASCE) that are defined
as

c—1
Z [nk — CCk]Q
ASCE = £=0

c—1
> CCy,
CCR = *=0 (11
where C'CY, is the number of correctly classified observa-
tions and ny, is the number of observations in class k. The
model with the highest correct classification rate is the one
with the better performance. The smaller ASCE, the better
classifier performance is. In general, we use both CCR and
ASCE to judge the functional network classifier perfor-
mance, and compare it with the one of the most common
classifiers in literatures. The better classifier is the one with

the highest CCR value and the smallest ASCE value.

2) Time of execution: It is the time needed to execute the clas-
sifier till obtaining the final classification model. The lower
computation cost is the better classifier.

3) The minimum description length (MDL) criterion: As
explained previously, the best model is the one with the
smallest MDL value.

4) Number of parameters: A model with more parameters
is able to lead to a better fit, but it can be less practical
than another with smaller number of parameters. There-
fore, knowing number of parameters in the final model will
lead to better judgement.

From the previous illustrations, we conclude that the uncon-
strained functional networks classifier gets over the “black box,”
the option chosen by both hidden layers and neurons, and the
limited ability to explicitly identify possible causal relation-
ships problems in the standard neural networks. In addition,
the learned parameters in functional networks have significant
meaning and the final functional networks model is determined
by solving a system of equations; then, it does not have the
difficulty of local optima in both feedforward neural network
(FFN) [2], [21] and radial basis function (RBF)[13], [14], [22].
The performance of the functional networks classifier does not
have critical parameter, such as the k-value and metric function
to measure the distance between data item as in the k-nearest-
neighbor technique (KNN). The performance of the new classi-
fier is investigated against the most common existing classifiers
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- The K-nn classifier: The best £ is ng;
- The SVM classifier:
- Gauessian and Sigmoidal Kernel;
- Parameters, 0 = 0.5, v = 0.5, and § = 1;
- A constant M = 100, satisfying 0 < A\;x < M;
- The MLP classifier:
- Use newff(); with two hidden layer ;
- # hidden nodes is min{2p + 2, {5 };
- Activation functions: purelin, logsig, tansig;
- Use 3000 iteration and a tolerance 0.01;
- The FN-ILS classifier:
- Use tg = 2, polynomial degree;
- Both PPN and RBF classifier:
- One parameter: o = dmz’;
- where d,,q; is the maximum Euclidean
distance between the selected centers;
- k is the number of the centers;
- No parameters for MLR and MDA classifiers.

Fig. 3. Parameters for different classifiers.

in both machine learning and statics communities using both
real-world applications and simulation studies. For the sake of
both space and simplicity, we recorded only these investigations
on one real-world application as it is shown in Section IV.

IV. REAL APPLICATION AND COMPARATIVE STUDIES

A. Initializations

The data sets we use here come from the University of Cali-
fornia at Irvine website.! All the computations are implemented
using MATLAB V6 under Pentium IV personal computer.

We use the stratified sampling and cross-validation tech-
niques to make sure that we get the same proportion from each
group as in the original data. We repeat the estimation and
validation processes for N = 500 times; then, we compute all
the quality measures explained in Section III for all classifiers.
Next, we summarize the results by computing the average,
the standard deviation, and the coefficient of variation of each
quality measure over these 500 runs.

We draw two graphs: one for the mean of CCR versus its stan-
dard deviation over the 500 runs, and the other for the mean of
the ASCE versus mean of MDL. These graphs in Fig. 6 help us
to decide which classifier is better in its performance. In both
plots, each classifier is represented by a symbol. In the graph
of the average of CCR versus its standard deviation, a good
classifier should appear in the upper left corner of the graph. In
the graph of average of MDL versus average of ASCE, a good
classifier should appear in the bottom left of the plot. In addi-
tion, corresponding to these graphs, we summarize the results
in Tables I and II. In these tables, the highest CCRs are given in
boldface.

B. Input Parameters for Classifiers

We investigate both constrained functional networks classi-
fier and existing classifiers on distinct databases, such as tha-
lassemias screening database. Different classifiers require dif-
ferent sets of input parameters; we select the input parameters
that give the best performance of the classifier. The configura-
tion for each classifier and how it can be used during the process
are illustrated in Fig. 3.

'URL: ftp://ftp.ics.uci.edu/pub/machine-learning-databases.

(1.) Input:
-Data: D = {(ys,xi) sx; eRP;i=1,...,n
drawn from c distinct classes,
(2.) Initialization:
- o and the degree of approximation, g.
- Linearly independent function, {tr;i(z;;)}.
- Compute the matrix, W of size n x (¢ + 1).
- Probabilities: [] = [[];,...,]].]; where
Hk = [7T1k:-»-777nk]T; Tik = "n .
- Coded matrix Y = (y;x) of size n x ¢ — 1.
- Unknown matrix: © = (641) of size n x ¢ — 1.
- Compute © using y;x, | z; = Tk + €ik-
(3.) Computational Process:

For k=0,1,...,c, compute the following:
9k (%i,0%)
- The vector 7;, = —_—
1+ > e9r(x:,0k)
k=1
- The Iterative Least Squares Loss function:

Q= 21 (G, — #in)?
- The vector §;1, and confusion matrix (CM).
- The vector, 0y, = [01k, - - -, Ont] 7.
n

- The value of SSE = > [yix — frik]z‘
i=1
- The Log-Likelihood function I(6;x)
n [c—1 c—1
> |:Z Yik g (Xi, Or) — In (1 + 3 egk(x"’e’“)):| .

i=1 k=1 k=1
- The standard errors (S.e.), that is defined as:
S.e = +/[I(0:x))1, where I(0;1,)
is a matrix of size ¢ (m + 1)P x ¢(m + 1)P,
- The Z-test, and odd-ratio (OR};), where

luewe = o5 OBy = .
- The p—value; [1 —cd.f(Ziest)],
- The degrees of freedom: [(g + 1)? — 1] [c — 1].
- The log-likelihood at no coefficients (Lg).
- The value of G-Statistic: G = 2(Lo — L).
(4.) Building the unconstrained classifier:
- Select the Model with the smallest L(®j).
- Compute Quality measures:
o CCR; ASCE; Num.Para., and Exec.Time
(5.) Validate and use the functional networks classifier
(6.) end.

Fig. 4. Learning algorithm of the functional networks with iterative least
squares (FN-ILS) classifier.

C. Thalassemias Data

We apply all classifiers to thalassemias data. Thalassemias
are genetic defects that are commonly found in many parts of
the world including Africa, the Far East, and the Mediterranean
regions [1]. In order to know how many people suffer from this
disease, the heterogenous population should be screened. A first
level analysis using hemocromocytometric data and a second
level examination (total HbA?2, globin chain synthesis, and ge-
netic analysis), should be carried out to identify a and h tha-
lassemia carriers. The data set consists of 304 clinical records
of eight grade students based on a thalassemia screening carried
out by the Ozieri Hospital, Italy. The data has 13 predictor vari-
ables, and three categories with 196 from normal cases (y = 0),
81 from a cases (y = 1), and 27 from h cases (y = 2).

In [11] and [19], the training of the computer to classify pa-
tients was used, which consisted of 304 clinical records based
on a thalassemia screening. The predictor variables, which were
considered relevant for the classification were RBC, Hb, Ht, and
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Fig. 5. Scatter plot matrix of the used thalassemias screening database.
TABLE I
THALASSEMIAS DATA: THE INTERNAL VALIDATION RESULTS WITH FOUR PREDICTORS
Classifier COR-OBST | COR-OBS2 | COR-OBS3 | MISS-OBST | MISS-OBS2 | MISS-OBS3 | CCR
LogReg 182 57 24 14 24 3 0.865
DiscAnal 160 74 27 36 7 0 0.859
KNN 195 32 9 I 49 18 0.776
SVM 190 78 26 6 3 I 0.967
PNN 185 65 20 1T 16 7 0.882
RBFN 187 57 16 9 24 11 0.855
FFN 192 76 26 4 5 I 0.967
FNBF-ILS 192 77 25 4 4 2 0.964

MCYV [note: RBC—red blood cell count (106/Al); Hb—hemo-
globin (g/dl); Ht—hematocrit (%); and MCV—mean corpus-
cular volume (fl)].

One can see from the 3-D scatter plot in Fig. 5, that there is
some overlap between the two groups. For the internal valida-
tion purpose, we summarize the output of both existing classi-
fiers and functional networks backward-forward-iterative least
squares (FNBF-ILS) in Table 1. The columns 2—4 of Table I
contain the number of correctly classified observations in each
class. The last column contains the correct classification rate;
the highest value is in boldface. The remaining columns contain
the number of misclassified observations in each class. From
Table I, we observe that KNN, RBF networks, and discrimi-
nant analysis (DA) give the lowest CCR value among all clas-
sifiers. The FNBF-ILS with ¢ = 2 and support vector machines
(SVMs) classifiers have the highest CCR. The FNBF-ILS per-
formance is stable in both 2-D and high dimensions. The MLR,
probabilistic neural network (PNN), and KNN classifiers per-
form more or less the same.

To evaluate the performance of all the classifiers on tha-
lassemias data, we divide the given data into testing and training

sets. The training set consists of 108 observations (with 55
normal cases, 44 a, and 9 h) and the testing set is made up
of 196 observations (141 normal cases, 37 a, and 18 h). Note
that the training data has less observations than the testing
data, which represents a challenge for all methods. The quality
measure results and the scatter plot graphs are shown in Table II
and Fig. 6, respectively.

Fig. 6 shows two scatter plots, where each of the eight classi-
fiers is represented by a symbol. The first plot is the average of
CCR versus its standard deviation. A good classifier appears in
the upper left corner of the graph. The second plot is the average
of MDL versus the mean of ASCE. A good method appears in
the bottom left corner of the plot.

From Table II and Fig. 6, we observe, for example, that the
FFN, logistic regression, SVM, and KNN classifiers have the
worst performance in the external validation. The functional net-
works classifier (FNBF-ILS) is giving the highest values of the
average CCR, but with less time of computations. The FFN and
FNBF-ILS classifiers have the highest execution time. This is
due to their optimization technique for learning the neural func-
tions. All other classifiers, logistic regression, linear discrimi-
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TABLE II
THALASSEMIAS DATA: THE EXTERNAL VALIDATION RESULTS
Classification Method | No. Parameter MDL Time of Exec. CCR ASCE
mean | StDev mean StDev | mean | StDev | mean | StDev| mean | StDev
Logistic Regression 5 0 | -495.100 | 32.883 | 0.876 | 0.051 | 0.782 | 0.035 | 1.014 | 0.341
Linear Disc Anal. 5 0 -615.915 40.473 | 0.006 | 0.008 | 0.822 | 0.032 | 0.811 | 0.404
KNN 5 0 | -586.607 | 27.906 | 0.038 | 0.018 | 0.799 | 0.026 | 0.822 | 0.228
SVM 5 0 -447.576 31.445 | 0.110 | 0.024 | 0.746 | 0.031 [ 1.183 | 0.309
PNN 3 0 -639.327 30.175 | 1.218 | 0.077 | 0.837 | 0.021 [ 0.623 | 0.178
RBFN 3 0 -610.906 42.285 | 1.339 | 0.056 | 0.834 | 0.024 | 0.562 | 0.171
FFN 3 0 -537.019 | 145.088 | 54.334 | 25.188 | 0.768 | 0.125 | 1.987 | 3.647
FNBEF-ILS 13 1.873 | -689.619 41.689 | 9.444 | 4.432 | 0.876 | 0.021 | 0.301 | 0.108
pis S LR computations. On the other hand, the FNNs classifier has the
it + Linbise |] highest execution time. This is due to its optimization technique
ol -4 '.:cr, | for learning the neuron functions. All the other classifiers, lo-
r g :gg gistic regression, linear discriminant analysis, PNN, and RBF
066 - Ol FFN 1 have close values of the average correct classification rat and
o] T, Yr FNBFALS R
g | their performance are more or less the same.
§ o o We conclude that the functional networks classifier gets over
§ 075 % . the “black box,” the option chosen by both hidden layers and
= neurons, and the limited ability to explicitly identify possible
07 B . . .
causal relationships problems in the standard neural networks.
0est J In addition, the learned parameters in functional networks have
significant meaning and the final functional networks model is
A | determined by solving a system of equations. It did not have the
sl B difficulty of local optima as in both feedforward neural networks

002 004 006 008 D01 012 014 016 018 02
Standard deviation of CCR

50 F T T T T T T T T 3
(b)
-500 o 8
m}
-l
Q -550 _
=
=
=]
=
2 &
=
600 - O LR 1
0 + 4+ LinDisc
<& KNN
e £ SVm
¥ PNN
650 + 4
=t { RBF
O FFN
I FNBFALS
0.4 06 08 1 12 1.4 16 18 2

and RBFs. Furthermore, if the neuron functions are linear, then
it leads to the logistic function, but without need to make the lin-
earity assumption a priori. If they are nonlinear, it leads to the
sigmoidal function, which is the function used in the standard
neural network. Therefore, functional networks can be thought
of as semiparametric for both the logistic regression and gener-
alization of the standard neural network.

Finally, we can say that this new framework can be considered
abuilding stone in the decision making learnable techniques and
the results can also be applied in different business, science, en-
gineering, bioinformatics, and other industrial world wide appli-
cations. We suggest that for future work, we do more simulation
work with different families of linearly independent functions
and different kind of models beside the mixture model with dif-
ferent criterion of learning the functional networks classifier.
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Fig. 6. External validation results: (a) average of CCR versus occr and (b)
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nant analysis, PNN, and RBF are having close values of the av-
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V. CONCLUSION

Based on the results obtained from the real-world applica-
tions, we observe that the new classifier using the family of lin-
early independent polynomial functions with degree at most two
outperforms the most common existing classifiers in both in-
ternal and external validation. In addition, it is giving the highest
values of the average correct classification rate and less time of
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